Zeros of Lacunary Type of Polynomials

BA ZARGAR

Department of Mathematics University of Kashmir Srinagar

Email: bazargar@gmail.com

Received: November 05, 2016| Revised: December 01, 2016| Accepted: January 27, 2017

Published online: March 05, 2017

The Author(s) 2016. This article is published with open access at www.chitkara.edu.in/publications

Abstract In this paper we use matrix methods and Gereshgorian disk Theorem to present some interesting generalizations of some well-known results concerning the distribution of the zeros of polynomial. Our results include as a special case some results due to A .Aziz and a result of Simon Reich-Lossar.

(AMS) Mathematics Subject Classification: 30c10, 30c15.

Key words and Phrases: Lacunary type polynomial, coefficient, zeros.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following result due to Cauchy [4] is well known in the theory of the distribution of the zeros of a polynomial.

Theorem A. Let

\[P(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0 \]

be a polynomial of degree \(n \) then all the zeros of \(P(z) \) lie in the disk

\[|z| < 1 + A. \] \hspace{1cm} (1)

where \(A = \max |a_j|, j = 0, 1, 2, \ldots, n-1 \).

About forty years ago, in connection with Cauchy’s Classical result (Theorem A) Simon Reich proposed and among others Lossers [6] verified that if \(a_{n-1} = 0, Q > 1 \), then all the zeros of

\[P(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_1z + a_0, \]
Aziz [2] generalized the problem to lacunary polynomials and showed that the assertion (2), remains valid even if we do not assume that $Q > 1$. In fact he proved:

Theorem B. Let

$$P(z) = a_n z^n + a_r z^r + \ldots + a_1 z + a_0,$$

$a_r \neq 0, 0 < r \leq n - 1$ be a polynomial of degree $n \geq 2$, with real or complex coefficients if

$$Q = \left\{ \max_{0 \leq j \leq r} \left| \frac{a_j}{a_n} \right| \right\}^{\frac{1}{r}}$$

then all the zeros of $P(z)$ lie in the disk

$$|z| \leq Q + Q^2 + \ldots + Q^{r+1}$$

Where $0 \leq r \leq n - 1$. Other results of similar type were obtained among others by Alzer [1], Bell [3], Guggenheimer [5], Mohammad [7], Rahman [8], Walsh [10] (see also [9]).

As a generalization of Theorem B, we prove:

Theorem 1. Let

$$P(z) = a_n z^n + a_r z^r + \ldots + a_1 z + a_0$$

$a_r \neq 0, 0 \leq r \leq n - 1$ be a polynomial of degree $n \geq 2$, with real or complex coefficients if t is any given positive number and

$$Q_t = \left\{ \max_{0 \leq j \leq r} \left| \frac{a_j}{a_n} t^{n-1} \right| \right\}^{\frac{1}{n}}$$

then all the zeros of $P(z)$ lie in the disk
On The Distribution of The Zeros of Lacunary Type Polynomials

where 0 \leq r \leq n-1.

Taking \(t = 1 \), in equation (5), this reduces to Theorem B.

We next present the following result which provides an interesting refinement of Theorem 1.

Theorem 2. Let

\[P(z) = a_r z^n + a_{r-1} z^{r-1} + \ldots + a_0 \]

\(a_r \neq 0, 0 \leq r \leq n - 1 \) be a polynomial of degree \(n \geq 2 \), with real or complex coefficients if \(t \) is any given positive number and

\[Q_i = \left\{ \text{Max}_{0 \leq j \leq r} \left| \frac{a_j}{a_n} \right| t^{n-1} \right\}^{\frac{1}{n}} \]

then all the zeros of \(P(z) \) lie in the disk

\[|z| \leq \frac{1}{t} \left\{ Q_i + \text{Max}(Q_i^2, Q_i^{r+1}) \right\} \]

(6)

where 1 \leq r \leq n-1. The following result immediately follows from Theorem 2 by taking \(t = 1 \):

Corollary 1. Let

\[P(z) = a_r z^n + a_{r-1} z^{r-1} + \ldots + a_0 \]

\(a_r \neq 0, 0 \leq r \leq n - 1 \) be a polynomial of degree \(n \geq 2 \), with real or complex coefficients if \(t \) is any given positive number and

\[Q_i = \left\{ \text{Max}_{0 \leq j \leq r} \left| \frac{a_j}{a_n} \right| t^{n-1} \right\}^{\frac{1}{n}} \]

then all the zeros of \(P(z) \) lie in the disk
where \(1 \leq r \leq n - 1 \),

PROOF OF THE THEOREMS

Proof of Theorem 1. The companion matrix of the polynomial

\[P(z) = a_n z^n + a_{r-1} z^{r-1} + \ldots + a_1 z + a_0 \]

\(a_r \neq 0 \) \(0 \leq r \leq n - 1 \) of degree \(n \) is

\[
C = \begin{pmatrix}
0 & 0 & \ldots & 0 & \ldots & 0 & -a_0 t^{n-1} \\
\frac{Q_r}{t} & 0 & \ldots & 0 & \ldots & 0 & -a_r t^{n-2} \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & \frac{Q_r}{t} & \ldots & 0 & -a_r t^{n-r-1} \\
& & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & 0 & \ldots & \frac{Q_r}{t} & 0
\end{pmatrix}
\]

By hypothesis,

\[Q_r = \max_{0 \leq j \leq n} \left| \frac{a_j}{a_n} \right| t^{n-j} \]

therefore,

\[\left| \frac{a_j}{a_n} \right| t^{n-j} \leq Q_r^n \quad \text{for} \quad j = 0, 1, \ldots, r \quad \text{and} \quad Q_r \neq 0. \quad (7) \]

We take the matrix

\[
P = \text{diag} \left(\left\{ \frac{Q_r}{t} \right\}^{n-1}, \left\{ \frac{Q_r}{t} \right\}^{n-2}, \ldots, \left\{ \frac{Q_r}{t} \right\}, 1 \right)\]
On the Distribution of the Zeros of Lacunary Type Polynomials

and form the matrix

\[
P^{-1}CP = \begin{pmatrix}
0 & 0 & \ldots & 0 & \ldots & 0 & \frac{-a_0 t^{n-1}}{a_n Q_{n-1}} \\
\frac{Q_t}{t} & 0 & \ldots & 0 & \ldots & 0 & \frac{-a_1 t^{n-2}}{a_n Q_{n-1}} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \frac{Q_t}{t} & \ldots & 0 & \frac{-a_r t^{n-r-1}}{a_n Q_{n-r-1}} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & \ldots & \frac{Q_t}{t} & 0
\end{pmatrix}
\]

Applying Gereshgorian Theorem to the columns of \(P^{-1} CP \) and noting (7), it follows that all the eigen values of the matrix \(P^{-1} CP \) lie in the circle

\[
|z| \leq \max \left\{ \frac{Q_t}{t}, \sum_{j=0}^{r} \frac{|a_j| t^{n-j-1}}{a_n |Q_{n-j-1}|} \right\}
\]

\[
\leq \frac{1}{t} \max \left\{ Q_t, \sum_{j=0}^{r} Q_j^{j+1} \right\}
\]

\[
= \frac{1}{t} \left\{ Q_t + Q_t^2 + \ldots + Q_t^{r+1} \right\}
\]

Since the matrix \(P^{-1} CP \) is similar to the matrix \(C \) and the eigen values of \(C \) are the zeros of the polynomial \(P(z) \), it follows that all the zeros of \(P(z) \) lie in the circle

\[
|z| \leq \frac{1}{t} \left\{ Q_t + Q_t^2 + \ldots + Q_t^{r+1} \right\}
\]

Which completes the proof of Theorem 1.

Proof of Theorem 2. The companion matrix of the polynomial

\[
P(z) = a_n z^n + a_r z^r + \ldots + a_1 z + a_0
\]

\(a_r \neq 0 \) \(0 \leq r \leq n - 1 \) of degree \(n \) is given by
Proceeding similarly as in the proof of Theorem 1 and noting that

\[
P = \text{diag}\left\{ \left(\frac{Q_t}{t} \right)^{n-1}, \left(\frac{Q_t}{t} \right)^{n-2}, \ldots, \left(\frac{Q_t}{t} \right), 1 \right\}
\]

\[
Q_t = \left\{ \text{Max}_{0 \leq j \leq s} \left| \frac{a_j}{a_n} \right|^n t^{-j} \right\}
\]

It follows that the matrix

\[
P^{-1}CP = \begin{pmatrix}
0 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 & -\frac{a_0 t^{n-1}}{a_n Q_t^{n-1}} \\
\frac{Q_t}{t} & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 & -\frac{a_1 t^{n-2}}{a_n Q_t^{n-1}} \\
\cdots & \vdots \\
0 & 0 & \ldots & \frac{Q_t}{t} & \ldots & 0 & \ldots & 0 & \ldots & 0 & -\frac{a_r t^{n-r-1}}{a_n Q_t^{n-r-1}} \\
\cdots & \vdots \\
0 & 0 & \ldots & 0 & \ldots & \frac{Q_t}{t} & 0 & 0 & 0 & 0 & \vdots
\end{pmatrix}
\]
Applying Gereshgorian Theorem to the columns of $P^{-1} CP$ and noting (7), it follows that all the eigen values of the matrix $P^{-1} CP$ therefore that of C lie in the circle

$$|z| \leq \max_{1 \leq j \leq r} \left\{ a_n \left| \frac{t^{n-1}}{Q^r} \right|, a_j \left| \frac{t^{n-j-1}}{Q^r} \right| \right\}$$

$$\leq \frac{1}{t} \max_{1 \leq j \leq r} \left\{ Q, Q + Q^{r+1} \right\}$$

$$= \frac{1}{t} \left\{ Q + \max(Q^2, Q^{r+1}) \right\}$$

Since the matrix $P^{-1} CP$ is similar to the matrix C and the eigen values of C are the zeros of the polynomial $P(z)$, therefore we conclude that all the zeros of $P(z)$ lie in the circle denoted by (4). This proves Theorem 2 completely.

REFERENCES