Common Fixed Point Theorem For Mappings Satisfying (CLRg) Property

SAVITRI* AND NAWNEET HOODA

DCR University, Murthal (India)

*Email: savitrimalik1234@gmail.com

Received: February 19, 2015 | Revised: September 16, 2015 | Accepted: September 17, 2015

Abstract: The aim of this paper is to establish a common fixed point theorem for two pairs of mappings satisfying (CLRg) property.

Keywords: Common fixed point, complex-valued metric space, (CLRg) property, weakly compatible mappings.

1. INTRODUCTION

Fixed point theory has fascinated hundreds of researchers since 1922 with the celebrated Banach's fixed point theorem. This is a very active field of research at present. In 2011, Azam et al [6] introduced the concept of complex-valued metric space. Recently, Sintunavarat and Kumam [15] introduced the concept of (CLRg) property. Many results are proved on existence of fixed points in complex-valued metric spaces, see [1, 3-6, 8, 9, 11, 12, 14, 16, 17]. An interesting and detailed discussion on (CLRg) property is given by Babu and Subhashini [7].

In this paper, we use the concept of (CLRg) property and prove a common fixed point theorem for mappings satisfying (CLRg) property in complex-valued metric space.

2. PRELIMINARIES

Let \(\mathbb{C} \) be the set of complex numbers. Define a partial order \(\preceq \) on \(\mathbb{C} \) as follows:

\[
\begin{align*}
 z_1 \preceq z_2 & \quad \text{if} \quad \text{Re}(z_1) \leq \text{Re}(z_2), \quad \text{Im}(z_1) \leq \text{Im}(z_2), \\
 z_1 \not\preceq z_2 & \quad \text{if} \quad z_1 \neq z_2 \quad \text{and} \quad \text{either} \quad \text{Re}(z_1) < \text{Re}(z_2), \quad \text{Im}(z_1) < \text{Im}(z_2)
\end{align*}
\]
or \(\text{Re}(z_1) < \text{Re}(z_2) \), \(\text{Im}(z_1) = \text{Im}(z_2) \)

or \(\text{Re}(z_1) = \text{Re}(z_2) \), \(\text{Im}(z_1) < \text{Im}(z_2) \)

Definition 2.1 ([6]). Let \(X \) be a nonempty set such that the map \(d : X \times X \to \mathbb{C} \) satisfies the following conditions:

(c1) \(0 \leq d(x, y) \) for all \(x, y \in X \) and \(d(x, y) = 0 \) iff \(x = y \);

(c2) \(d(x, y) = d(y, x) \) for all \(x, y \in X \);

(c3) \(d(x, y) \leq d(x, z) + d(z, y) \) for all \(x, y, z \in X \).

Then \(d \) is called a complex-valued metric on \(X \) and \((X, d) \) is called complex-valued metric space.

Definition 2.2 ([6]). Let \((X, d) \) be a complex-valued metric space and \(x \in X \). Then the sequence \(\{x_n\} \) is said to converge to \(x \) if for every \(0 < c \in \mathbb{C} \), there is a natural number \(N \) such that \(d(x_n, x) < c \) for all \(n \in \mathbb{N} \).

We write it as \(\lim_{n \to \infty} x_n = x \).

Definition 2.3 ([13]). An element \((x, y) \in X \times X \) is called coupled coincidence point of the mappings \(S : X \times X \to X \) and \(T : X \to X \) if

\[
S(x, y) = T(x), S(y, x) = T(y) .
\]

Definition 2.4 ([10]). An element \(x \in X \) is called common fixed point of the mappings \(S : X \times X \to X \) and \(T : X \to X \) if

\[
x = S(x, x) = T(x) .
\]

Definition 2.5 ([2]). The mappings \(S : X \times X \to X \) and \(T : X \to X \) are called \(w \)-compatible if \(TS(x, y) = S(Tx, Ty) \), whenever \(S(x, y) = Tx, S(y, x) = Ty \).

Definition 2.6 ([10]). The mappings \(S : X \times X \to X \) and \(T : X \to X \) are called commutative if \(TS(x, y) = S(Tx, Ty) \), for all \(x, y \in X \).

We note that the maps \(S : X \times X \to X \) and \(T : X \to X \) are weakly compatible if \(S(x, y) = T(x), S(y, x) = T(y) \) implies \(TS(x, y) = S(Tx, Ty), TS(y, x) = S(Ty, Tx) \) for all \(x, y \in X \).

Definition 2.7 ([15]). Let \((X,d) \) be a metric space. Two mappings \(f : X \to X \) and \(g : X \to X \) are said to satisfy (CLRg) property if there exists a sequence \(\{x_n\} \subset X \) such that

\[
\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = g(p) \quad \text{for some} \quad p \in X .
\]
Definition 2.8 ([7]). Let \((X,d)\) be a metric space. Two mappings \(f : X \times X \to X\) and \(g : X \to X\) are said to satisfy (CLRg) property if there exist sequences \(\{x_n\}, \{y_n\} \subset X\) such that

\[
\lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} g(x_n) = g(p),
\]

\[
\lim_{n \to \infty} f(y_n, x_n) = \lim_{n \to \infty} g(y_n) = g(q), \quad \text{for some } p, q \in X.
\]

Definition 2.9 ([14]). The “max” function for the partial order relation “\(\preceq\)” defined by the

1. \(\max\{z_1, z_2\} = z_2\) if and only if \(z_1 \preceq z_2\),
2. If \(z_1 \preceq \max\{z_2, z_3\}\), then \(z_1 \preceq z_2\) and \(z_1 \preceq z_3\),
3. \(\max\{z_1, z_2\} = z_2\) if the only if \(z_1 \preceq z_2\) or \(|z_1| \preceq |z_2|\).

Example 2.1. Let \(X = [0, \infty)\) be a metric space under usual metric. Define mappings \(f : X \times X \to X\) and \(g : X \to X\) by

\[f(x, y) = x + y + 2, g(x) = 5 + x, \forall x, y \in X.\]

Let \(\{x_n\}\) and \(\{y_n\}\) be sequences in \(X\) where \(x_n = 3 + \frac{1}{n}\) and \(y_n = 3 - \frac{1}{n}\).

Since

\[
\lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} (x_n + y_n + 2) = 8 = g(3),
\]

\[
\lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} \left(3 + \frac{1}{n}\right) = 3 + \frac{1}{n} + 5 = 8 = g(3)
\]

and

\[
\lim_{n \to \infty} f(y_n, x_n) = \lim_{n \to \infty} (y_n + x_n + 2) = 8 = g(3),
\]

\[
\lim_{n \to \infty} g(y_n) = \lim_{n \to \infty} \left(3 - \frac{1}{n}\right) = 8 = g(3)
\]

So, the maps \(f\) and \(g\) satisfy (CLRg) property.

3. MAIN RESULTS

Theorem 3.1. Let \((X,d)\) be a complex valued metric-space and let \(f, g : X \times X \to X\) and \(\phi, \psi : X \to X\) are mappings such that
(1) \(d(f(x,y), g(u,v)) \leq p \max \{d(\phi x, \psi u), d(f(x,y), \phi x), d(g(u,v), \psi u), \\
\quad d(f(x,y), \psi u), d(g(u,v), \phi x) \} \)

for all \(x, y, u, v \in X \) and \(0 < p < 1 \), (2) the pair \((f, \phi)\) and \((g, \psi)\) are weakly compatible. If the pair \((f, \phi)\) and \((g, \psi)\) satisfy (CLRg) property then \(f, g, \phi \) and \(\psi \) have a unique common fixed point, that is, there exists a unique \(x \) in \(X \) such that

\[
f(x, x) = \psi x = g(x, x) = \phi x = x.
\]

Proof. Let \((f, \phi)\) and \((g, \psi)\) satisfy (CLRg) property then there exist sequences \(\{x_n\}, \{y_n\}, \{x'_n\} \) and \(\{y'_n\} \) in \(X \) such that

\[
\lim_{n \to \infty} f(x_n, y_n) = \lim_{n \to \infty} \phi(x_n) = \phi \alpha \tag{3.1}
\]

\[
\lim_{n \to \infty} f(y_n, x_n) = \lim_{n \to \infty} \phi(y_n) = \phi \beta \tag{3.2}
\]

\[
\lim_{n \to \infty} g(x'_n, y'_n) = \lim_{n \to \infty} \psi(x'_n) = \psi \alpha' \tag{3.3}
\]

\[
\lim_{n \to \infty} g(y'_n, x'_n) = \lim_{n \to \infty} \psi(y'_n) = \psi \beta' \tag{3.4}
\]

for some \(\alpha, \beta, \alpha', \beta' \in X \).

Now we will show that \((f, \phi)\) and \((g, \psi)\) have common coupled coincidence point. For this, we will first show that \(\phi \alpha = \psi \alpha' \).

Putting \(x = x_n, y = y_n, u = x'_n, v = y'_n \) in condition (1) we get

\[
d(f(x_n, y_n), g(x'_n, y'_n)) \leq p \max \{d(\phi x_n, \psi x'_n), d(f(x_n, y_n), \phi x_n), d(g(x'_n, y'_n), \psi x'_n), \\
\quad d(f(x_n, y_n), \psi x'_n), d(g(x'_n, y'_n), \phi x_n) \} \]

Taking limit as \(n \to \infty \) and using (3.1), (3.2), (3.3) and (3.4), we have

\[
d(\phi \alpha, \psi \alpha') \leq p \max \{d(\phi \alpha, \psi \alpha'), d(\phi \alpha, \phi \alpha), d(\psi \alpha', \psi \alpha'), d(\phi \alpha, \psi \alpha'), d(\psi \alpha', \phi \alpha) \}
\]

\[
\Rightarrow \quad d(\phi \alpha, \psi \alpha') \leq pd(\phi \alpha, \psi \alpha')
\]

\[
\Rightarrow \quad |d(\phi \alpha, \psi \alpha')| \leq p|d(\phi \alpha, \psi \alpha')|
\]
which is possible when $\phi \alpha = \psi \alpha'$.
So $\phi \alpha = \psi \alpha'$.
Similarly we can show that $\phi \beta = \psi \beta'$.
Now we will show that $\phi \beta = \psi \alpha'$.
For this, we put $x = y_n, y = x_n, u = x_n', v = y_n'$ in condition (1), we get

$$d(f(y_n, x_n), g(x_n', y_n')) \preceq p \max\{d(\phi y_n, \psi x_n'), d(f(y_n, x_n), \phi y_n), d(g(x_n', y_n'), \psi x_n'),$$

$$d(f(y_n, x_n), \psi x_n'), d(g(x_n', y_n'), \phi y_n]\}$$

Taking limit as $n \to \infty$ and using (3.1), (3.2), (3.3) and (3.4), we have

$$d(\phi \beta, \psi \alpha') \preceq p \max\{d(\phi \beta, \psi \alpha'), d(\phi \beta, \phi \beta), d(\psi \alpha', \psi \alpha'), d(\phi \beta, \psi \alpha'), d(\psi \alpha', \phi \beta)\}$$

$$\Rightarrow d(\phi \beta, \psi \alpha') \preceq p d(\psi \alpha', \phi \beta)$$

$$\Rightarrow |d(\phi \beta, \psi \alpha')| \leq p |d(\psi \alpha', \phi \beta)|$$

which is possible when $\phi \beta = \psi \alpha'$.
So $\phi \beta = \psi \alpha'$.
Similarly we can show that $\phi \alpha = \psi \beta'$.
Hence

$$\phi \alpha = \phi \beta = \psi \alpha' = \psi \beta'$$

(3.5)

Now we will show that $\phi \alpha = g(\alpha', \beta')$ and $\phi \beta = g(\beta', \alpha')$.
For this we put $x = x_n, y = y_n, u = \alpha', v = \beta'$ in condition (1), we get

$$d(f(x_n, y_n), g(\alpha', \beta')) \preceq p \max\{d(\phi x_n, \psi \alpha'), d(f(x_n, y_n), \phi x_n), d(g(\alpha', \beta'), \psi \alpha'),$$

$$d(f(x_n, y_n), \psi \alpha'), d(g(\alpha', \beta'), \phi x_n)\}$$

Taking limit as $n \to \infty$ and using (3.1), (3.2), (3.3), (3.4) and (3.5), we have

$$d(\phi \alpha, g(\alpha', \beta')) \preceq p \max\{d(\phi \alpha, \psi \alpha'), d(\phi \alpha, \phi \alpha), d(g(\alpha', \beta'), \psi \alpha'),$$

$$d(\phi \alpha, \psi \alpha'), d(g(\alpha', \beta'), \phi \alpha)\}$$
\[d(\phi\alpha, g(\alpha', \beta')) \preceq p \max\{0, 0, d(g(\alpha', \beta'), \phi\alpha), 0, d(g(\alpha', \beta'), \phi\alpha)\} \]

\[d(\phi\alpha, g(\alpha', \beta')) \preceq p d(\phi\alpha, g(\alpha', \beta')) \]

\[|d(\phi\alpha, g(\alpha', \beta'))| \leq p |d(\phi\alpha, g(\alpha', \beta'))| \]

which is possible when as \(\phi\alpha = g(\alpha', \beta') \) as \(0 < p < 1 \).

So \(\phi\alpha = g(\alpha', \beta') \).

Similarly \(\phi\beta = g(\beta', \alpha') \).

Now we will show that \(\psi\alpha = f(\alpha, \beta) \) and \(\psi\beta = f(\beta, \alpha) \).

For this we put \(x = \alpha, y = \beta, u = x'_n \) and \(v = y'_n \) in condition (1), we get

\[d(f(\alpha, \beta), g(x'_n, y'_n)) \preceq p \max\{d(\phi\alpha, \psi x'_n), d(f(\alpha, \beta), \phi\alpha), d(g(x'_n, y'_n), \psi x'_n),\]

\[d(f(\alpha, \beta), \psi x'_n), d(g(x'_n, y'_n), \phi\alpha)\} \]

Taking limit as \(n \to \infty \) and using (3.1), (3.2), (3.3), (3.4) and (3.5), we have

\[d(f(\alpha, \beta), \psi\alpha') \preceq p \max\{d(\phi\alpha, \psi\alpha'), d(f(\alpha, \beta), \phi\alpha), d(\psi\alpha', \psi\alpha'),\]

\[d(f(\alpha, \beta), \psi\alpha'), d(\psi\alpha', \phi\alpha)\} \]

\[\Rightarrow d(f(\alpha, \beta), \psi\alpha') \preceq p \max\{0, d(f(\alpha, \beta), \psi\alpha'), 0, d(f(\alpha, \beta), \psi\alpha'), 0\} \]

\[\Rightarrow d(f(\alpha, \beta), \psi\alpha') \preceq p d(f(\alpha, \beta), \psi\alpha') \]

\[\Rightarrow |d(f(\alpha, \beta), \psi\alpha')| \leq p |d(f(\alpha, \beta), \psi\alpha')| \]

possible when \(f(\alpha, \beta) = \psi\alpha' \) as \(0 < p < 1 \).

So \(f(\alpha, \beta) = \psi\alpha' \).

Similarly \(f(\beta, \alpha) = \psi\beta' \).

Thus \(\phi\alpha = \phi\beta = \psi\alpha' = \psi\beta' = f(\alpha, \beta) = f(\beta, \alpha) = g(\alpha', \beta') = g(\beta', \alpha') \)

\[\Rightarrow g(\alpha', \beta') = \phi\alpha = \psi\alpha' = f(\alpha, \beta) \]

\[\Rightarrow g(\beta', \alpha') = \phi\beta = \psi\beta' = f(\beta, \alpha). \]
Hence the pairs \((f, \phi)\) and \((g, \psi)\) have common coupled coincidence point.

Now let
\[f(\alpha, \beta) = \phi\alpha = g(\alpha', \beta') = \psi\alpha' = x \]
and
\[f(\beta, \alpha) = \phi\beta = g(\beta', \alpha') = \psi\beta' = y \, . \]

Since \((f, \phi)\) and \((g, \psi)\) are weakly compatible so

\[
\phi f(\alpha, \beta) = f(\phi\alpha, \phi\beta) = f(x, y) \quad \text{and} \quad \phi f(\beta, \alpha) = f(\phi\beta, \phi\alpha) = f(y, x),
\]
but

\[
f(\alpha, \beta) = x \Rightarrow \phi f(\alpha, \beta) = \phi x
\]

\[
f(\beta, \alpha) = y \Rightarrow \phi f(\beta, \alpha) = \phi y
\]

Therefore \(\phi x = f(x, y)\) and \(\phi y = f(y, x)\) .

Similarly \(\psi x = g(x, y)\) and \(\psi y = g(y, x)\) .

Hence

\[
\phi x = f(x, y), \phi y = f(y, x) \quad \text{and} \quad \psi x = g(x, y), \psi y = g(y, x).
\]

Now we will show that \(x = y\). Using condition (1), we get

\[
d(x, y) = d(f(\alpha, \beta), g(\beta', \alpha'))
\]

\[
\preceq p \max \{d(\phi\alpha, \psi\beta''), d(f(\alpha, \beta), \phi\alpha), d(g(\beta', \alpha'), \psi\beta'),
\]

\[
d(f(\alpha, \beta), \psi\beta'), d(g(\beta', \alpha'), \phi\alpha)\}\}
\]

\[
\Rightarrow d(x, y) \preceq p \max \{0, 0, 0, 0\}
\]

\[
\Rightarrow |d(x, y)| = 0
\]

\[
\Rightarrow x = y
\]

Now, we will prove that \(\phi x = \psi x\) .

Using condition (1), we have

\[
d(\phi x, \psi x) = d(f(x, y), g(x, y))
\]

\[
\preceq p \max \{d(\phi x, \psi x), d(f(x, y), \phi x), d(g(x, y), \psi x)\},
\]
Savitri Hooda, N

\[d(f(x, y), \psi x), d(g(x, y), \phi x) \]

\[\Rightarrow \]

\[d(\phi x, \psi x) \preceq p \max \{d(\phi x, \psi x), 0, 0, d(\phi x, \psi x), d(\psi x, \phi x)\} \]

\[\Rightarrow \]

\[|d(\phi x, \psi x)| \leq p |d(\phi x, \psi x)| < |d(\phi x, \psi x)| \]

which is possible when \(\phi x = \psi x \) as \(0 < p < 1 \).

So \(\phi x = \psi x \).

\[\Rightarrow \]

\[f(x, y) = \phi x = \psi x = g(x, y) \]

Similarly \(\phi y = \psi y \) and \(f(y, x) = g(y, x) \).

Now we will show that \(\phi x = x \).

Using condition (1), we get

\[d(x, \phi x) = d(f(\alpha, \beta), g(x, y)) \]

\[\preceq p \max \{d(\phi \alpha, \psi x), d(f(\alpha, \beta), \phi \alpha), d(g(x, y), \psi x), d(f(\alpha, \beta), \psi x), d(g(x, y), \phi \alpha)\} \]

\[\Rightarrow \]

\[d(x, \phi x) \preceq p \max \{d(x, \psi x), d(f(\alpha, \beta), \phi \alpha), d(\phi x, \psi x), d(f(\alpha, \beta), \psi x), d(g(x, y), \phi \alpha)\} \]

\[\Rightarrow \]

\[d(x, \phi x) \preceq p \max \{d(x, \phi x), d(x, x), d(\phi x, \phi x), d(\psi x, x), d(\phi x, x)\} \]

\[\Rightarrow \]

\[d(x, \phi x) \preceq p \max \{d(x, \phi x), 0, 0, d(\phi x, x), d(\phi x, x)\} \]

\[\Rightarrow \]

\[|d(x, \phi x)| \leq p \max |d(x, \phi x)| \]

which is possible when \(x = \phi x \) as \(0 < p < 1 \).

So \(x = \phi x \).

Hence \(f(x, x) = \psi x = g(x, x) = \phi x = x \).

Thus \(f, g, \phi \) and \(\psi \) have a common fixed point.

Now to prove uniqueness, let \(y \) be any other common fixed point of \(f, g, \phi \) and \(\psi \).

\[\Rightarrow \]

\[f(y, y) = \psi y = g(y, y) = \phi y = y \]
Then \(d(x, y) = d(f(x, x), g(y, y)) \)
\[
\lesssim p \max \{d(\phi x, \psi y), d(f(x, x), \phi x), d(g(y, y), \psi y), \}
\]
\[
d(f(x, x), \psi y), d(g(y, y), \phi x)\}
\]
\[
\Rightarrow d(x, y) \lesssim p \max \{d(x, y), d(x, x), d(y, y), d(x, y), d(x, x)\}
\]
\[
\Rightarrow |d(x, y)| \leq p |d(x, y)|
\]
which is possible when \(x = y \) as \(0 < p < 1 \).
So \(x = y \).
Hence \(f, g, \phi \) and \(\psi \) have unique common fixed point.

Example 3.1. Let \(X = R \) be a complex valued metric space equipped with the complex valued metric space \(d(x, y) = |x - y| i \).
Let \(f: X \times X \to X \) and \(g: X \times X \to X \) be defined for all \(x, y \in X \) as
\[
f(x, y) = \begin{cases}
\frac{x - y}{8} & \text{if } x \geq y \\
0 & \text{if } x < y
\end{cases},
\]
\[
g(x, y) = \begin{cases}
\frac{x - y}{10} & \text{if } x \geq y \\
0 & \text{if } x < y
\end{cases}
\]
Let \(\psi: X \to X \) and \(\phi: X \to X \) be defined as
\[
\psi(x) = \frac{x}{2}, \ldots \phi(x) = \frac{x}{30}, \ldots, \text{ for all } x \in X.
\]
It is easy to check that all conditions of Theorem 3.1 are satisfied for all \(x, y, u, v \in X \). Thus, we have \(x = 0 \) is the unique common fixed point of \(f, g, \phi \) and \(\psi \).
If \(g = f \) and \(\psi = \phi \) in Theorem 3.1 then we have the following corollary:

Corollary 3.1. Let \((X, d)\) be a complex-valued metric-space and let \(f: X^2 \to X \) and \(\phi: X \to X \) are mappings such that
\[
(1) \quad d(f(x, y), f(u, v)) \leq p \max \{d(\phi x, \phi u), d(f(x, y), \phi x), d(g(u, v), \phi u),
\]
\[
d(f(x, y), \phi u), d(f(u, v), \phi x)\}
\]
for all \(x, y, u, v \in X \) and \(0 < p < 1 \),
(2) the pair \((f, \phi)\) is weakly compatible.

If the pair \((f, \phi)\) satisfy \((\text{CLRg})\) property then there exists a unique \(x\) in \(X\) such that \(f(x, x) = \phi x = x\).

ACKNOWLEDGEMENT

The authors sincerely thank the referees for their careful reading and valuable suggestions which have improved this paper.

REFERENCES

Common Fixed Point Theorem
For Mappings Satisfying (CLRg) Property

[13] Lakshmikantham, V., Ciric, L., Coupled fixed point theorems for non linear contractions in partially ordered metric spaces.

