Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata

SHIFATUL ISLAM, MOHAMMAD ABDULLAH-AL-SHAFI AND ALI NEWAZ BAHAR*

Department of Information & Communication Technology Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.

*Email: bahar_mitdu@yahoo.com

Received: August 27, 2015|Revised: September 29, 2015|Accepted: November 2, 2015

Published Online: December 17, 2015
The Author(s) 2015. This article is published with open access at www.chitkara.edu.in/publications

Abstract Quantum dot cellular automaton (QCA) are dominant nanotechnology which has been used extensively in digital circuits and systems. It is a promising alternative to complementary metal–oxide–semiconductor (CMOS) technology with many enticing features such as high-speed, low power consumption and higher switching frequency than transistor based technology. The code converters are the basic unit for transformation of data to execute arithmetic processes. In this paper, QCA based 2-bit binary-to-gray; 3-bit binary-to-gray and 4-bit binary-to-gray code converter have been proposed. The proposed design reduces the number of cells, area and raises switching speed. The simulations are completed using QCADesigner and Microwindlite tool which is widely used for simulation and verification.

Keywords: Binary to Gray Converter; Quantum Dot Cellular Automata; Gray Code; QCA cell.

1. INTRODUCTION

QCA is an advanced access towards the modern era of nanotechnology and an alternative of CMOS technology [1] and offers a new designing procedure which is relevant for logic gates. Physical limits of CMOS such as quantum effects and technological limits like power dissipation; hamper the momentum of microelectronics using regular circuit scaling [2]. QCA is an emerging technology which allows operating frequencies in range of THz [3] that is not achievable in current CMOS technologies.

Conversion circuit embedded between two structures if each uses different codes for the same information. A code converter is a combinational circuit which generates two structures consistent even each uses distinct binary code.
In this paper we have designed and implemented a 2-bit binary-to-gray, 3-bit binary-to-gray and 4-bit binary-to-gray code converter in QCA technology. We implement the binary to gray converter in an efficient way using less number of cell and area.

2. FUNDAMENTAL OF QCA

The principal unit of QCA structure is QCA cell and it consists of two electrons with four quantum dots positioned at the vertices of a squared cell [4-6]. Electrons can shift to different quantum dots by means of electron tunneling. The electrons are forced to the corner area to expand their separation due to Coulomb repulsion. The state of a cell is called its polarization. The identical energetically nominal arrangements of the two electrons in the QCA cell, as shown in Figure 1. These two stable arrangements of electrons are denoted as cell polarization \(P = +1.00 \) and \(P = -1.00 \). By using cell polarization \(P = +1.00 \) to represent logic “1” and \(P = -1.00 \) to represent logic “0”, binary data is encoded in the charge composition of the QCA cell [7, 8].

![Figure 1: Structure of a basic QCA cell.](image)

A number of QCA combinational [1, 5, 9-22], sequential [23-32] and reversible logic [33-40] circuit have been proposed in recent years based on two cell inverters and three input majority voter elements [10, 17, 41, 42]. Elemental structures for QCA are the inverter and the majority gate. The elemental blocks of QCA logic involve a QCA wire, QCA inverter and QCA majority gate.

2.1 QCA wire

QCA wire is a bundle of interconnecting cells that are used to transfer polarization state. QCA wire can be made up of 45° cells or 90° cells shown in figure 2 respectively. The formal arrangement of QCA cells patterns a binary wire. For the electrostatic communications between the cells the signal propagates from one end to another. For a 45° QCA wire the propagation of the signal must be alternates between the two polarizations [43].
2.2. QCA inverter

QCA inverter is generally composed by placing the cells with only their edges contacts. This aspect is employed to forge an inverter as shown in Figure 3. QCA inverter returns the reversed value of the input value.

![QCA Inverter Diagram](image)

Figure 3: QCA inverter.

2.3 Majority voter (MV)

The MV has four terminal cells. Among these terminals three are defining as input terminal cells and resting one defining as output cell. Majority Gate [44] is expressed as logic function $MV(A, B, C) = AB + BC + AC$.

![Majority Voter Diagram](image)
To produce well-organized QCA design, the digital circuits are implemented with the help of majority gate-based design techniques are needed [45]. Logical AND gate and OR gate can be realized from the majority gate as shown in Figure 4.

![Figure 4: 2-input AND gate and 2-input OR gate using Majority voter.](image)

3. METHODOLOGY

QCA computation proceeds by direction of cells based on polarization of adjoining cells. An analysis is executed to find out the appropriate tools and verify the proposed circuit. Several approximate simulators as nonlinear approximation processes and bistable simulation engine are used to demonstrate. These procedures do not generate the genuine portion. Then QCA Designer 2.0.3 is preferred and this simulation engine is described [46]. QCA Designer is a tool used for model and simulation of QCA based circuit evolved at the ATIPS Laboratory. The functionality of the circuit is tested by QCA Designer 2.0.3 [47] which encompasses default values such as cell size, number of samples, radius of effect, convergence tolerance, relative permittivity, clock amplitude factor, Relaxation time etc. For implement the code converter in CMOS we used MICROWIND [48] which is a integrated tool for simulation.

4. PROPOSED CIRCUIT AND PRESENTATION

The immense availability of codes for corresponding different elements of information outcomes in the use of distinct codes by distinct schemes and it is required sometimes to use the result of the one system as employed to the input to another system. Code converters are circuits that convert a code into another which is programmed in logic arrays and used in many fields such as protecting information from third parties and increase data...
flexibility. It is also efficient in security department for devising and cracking codes.

4.1 Binary code

A code is a symbolic presentation of data and performs text information using the number system. For instance a binary sequence of six bits 110100 is identical to decimal number 52.

4.2 Gray code

Reflected binary code, also known as Gray code is a numeral structure where each value differs only a sole bit from the previous bit. Gray code is not convenient for arithmetic operations. Gray code has many constructive applications including simplify fault correction, terrestrial television, some cable television system, analog-to-digital converter and peripheral apparatus.

5. QCA IMPLEMENTATION OF CODE CONVERTERS

Figure 5 shows the simplified block diagram of 2-bit binary-to-gray, 3-bit binary-to-gray and 4-bit binary-to-gray code converter using majority voter.

![Diagram of binary-to-gray code converter](image)
Islam, Md S.
Mohammad, AAS
Bahar, AN

Figure 5: Block diagram of (a) 2-bit binary-to-gray (b) 3-bit binary-to-gray (c) 4-bit binary-to-gray code converter.
A two bit binary-to-gray code converter composed of two binary inputs B_1 and B_0 and the corresponding gray outputs are G_1 and G_0. Three bit binary-to-gray code converter composed of 3-inputs B_0, B_1, and B_2 and the corresponding gray outputs are G_0, G_1, and G_2. Four bit binary-to-gray code converter composed of 4-inputs B_3, B_2, B_1, and B_0, and the corresponding gray outputs are G_3, G_2, G_1, and G_0. Tables 1 to 3 shows the truth table of binary-to-gray code converter.

Table 1: Truth table Representations of two bit Binary to Gray Code Converter.

<table>
<thead>
<tr>
<th>Binary Inputs</th>
<th>Gray Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td>B_0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Truth table Representations of three bit Binary to Gray Code Converter.

<table>
<thead>
<tr>
<th>Binary Inputs</th>
<th>Gray Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0</td>
<td>B_1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Truth table Representations of four bit Binary to Gray Code Converter.

<table>
<thead>
<tr>
<th>Binary Inputs</th>
<th>Gray Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_3</td>
<td>B_2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
6. SIMULATION AND RESULT

The code converter circuits are designed using QCADesigner 2.0.3. The simulated circuit layout of 2-bit binary to gray, 3-bit binary to gray and 4-bit binary to gray code converter are shown in figure 6 to 8 respectively. The object parameters: cell width × cell height is 18 × 18 and dot diameter is 5.00.

The logical equation of two bit binary to gray code converter is \(G_1 = B_1 \) and \(G_0 = B_1 \oplus B_0 \). For three bit binary to gray code converter the logical equation is \(G_0 = B_0, G_1 = B_1 \oplus B_0 \) and \(G_2 = B_2 \oplus B_1 \). The logical equation of four bit binary to gray code converter is \(G_3 = B_3, G_2 = B_3 \oplus B_2, G_1 = B_2 \oplus B_1 \) and \(G_0 = B_1 \oplus B_0 \).

![Figure 6: QCA implementation of two bit binary to gray code converter.](image-url)
Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata

Figure 7: QCA implementation of three bit binary to gray code converter.

Figure 8: QCA implementation of four bit binary to gray code converter.

Clock zones
The functionality of the proposed structure is approved from the simulated waveform. The following parameters are used for Bistable Approximation: Number of samples = 12800, convergence tolerance = 0.001000, radius of effect = 65.000000nm, relative permittivity = 12.900000, clock low = 3.800000e–023J, clock high = 9.800000e–022J, clock shift = 0, clock amplitude factor = 2.000000, layer separation = 11.500000 and maximum iterations per sample = 100. The above mentioned parameters are mostly default values in QCA Designer. Figure 9 to 11 shows the simulated waveforms of the code converters.

Figure 9: Simulated output of two bit binary to gray code converter.

Figure 10: Simulated output of three bit binary to gray code converter.
For design and simulation the code converter in CMOS we employed MICROWIND. This is a very user-friendly engine to design and find out the covered area of logic gate.

Figure 11: Simulated output of four bit binary to gray code converter.

Figure 12: Simulated layout of two bit binary to gray code converter in CMOS.
Figure 13: Simulated layout of three bit binary to gray code converter in CMOS.

Figure 14: Simulated layout of four bit binary to gray code converter in CMOS.
Table 4: Performance Factors of Binary to Gray Code Converter.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Cells</td>
<td>41</td>
<td>86</td>
<td>131</td>
</tr>
<tr>
<td>Number of Clock</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Clock delay</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Area in QCA (µm²)</td>
<td>0.05</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>Area in CMOS (µm²)</td>
<td>22</td>
<td>44.2</td>
<td>71.78</td>
</tr>
<tr>
<td>Improvement (in times)</td>
<td>440</td>
<td>369</td>
<td>399</td>
</tr>
</tbody>
</table>

Figure 15: Comparative Figures for area (size) of QCA and CMOS with improvement.

CONCLUSION

In this paper, an effective approach for designing QCA based binary to gray converter has been presented in detail. The proposed designs are fit in the manner that they enclose less number of cells, clock phases and area. QCA technology can be best suited alternative of CMOS based technology. The simulation outcomes present that the proposed circuits execute well. These methods are conducive in quantum computing, digital signal processing (DSP), and nanotechnology. The proposed designs could be a promising step to build ALU’s, model complicated circuits in smaller dimensions and low power architecture in nanotechnology.
REFERENCES

http://dx.doi.org/10.1109/TC.2007.30

http://dx.doi.org/10.1063/1.356375

http://dx.doi.org/10.1109/NANO.2003.1231818

http://dx.doi.org/10.1109/ISCAS.2005.1465139

http://dx.doi.org/10.1109/ICCCE.2008.4580743

http://dx.doi.org/10.1016/j.mejo.2011.02.006

http://dx.doi.org/10.1186/2193-8865-3-15

http://dx.doi.org/10.1016/j.mejo.2007.03.013

http://dx.doi.org/10.1109/ISED.2013.11

http://dx.doi.org/10.1109/TC.2007.70831

http://dx.doi.org/10.1109/NANO.2008.159

http://dx.doi.org/10.1166/jctn.2014.3541

http://dx.doi.org/10.1631/jzus.C1100287

http://dx.doi.org/10.1016/j.mejo.2009.12.008
Islam, Md S.
Mohammad, AAS
Bahar, AN