Fibonacci and k Lucas Sequences as Series of Fractions

A. D. GODASE1 AND M. B. DHAKNE2

1V. P. College, Vaijapur, Maharashtra, India
2Dr. B. A. M. University, Aurangabad, Maharashtra, India

E-mail: mathematicsdept@vpcollege.net

Received: July 29, 2015 | Revised: September 30, 2015 | Accepted: October 31, 2015
Published online: March 30, 2016
The Author(s) 2016. This article is published with open access at www.chitkara.edu.in/publications

Abstract In this paper, we defined new relationship between k Fibonacci and k Lucas sequences using continued fractions and series of fractions, this approach is different and never tried in k Fibonacci sequence literature.

Keywords: k-Fibonacci sequence, k-Lucas sequence, Recurrence relation

Mathematics Subject Classification: 11B39, 11B83

1 INTRODUCTION

The Fibonacci sequence is a source of many nice and interesting identities. Many identities have been documented in [2], [3], [10], [11], [12], [13], [17]. A similar interpretation exists for k Fibonacci and k Lucas numbers. Many of these identities have been documented in the work of Falcon and Plaza[1], [4], [5], [7], [8], [9], where they are proved by algebraic means. In this paper, we obtained some new properties for k Fibonacci and k Lucas sequences using series of fraction.

2 PRELIMINARY

Definition 2.1. The k–Fibonacci sequence $\{F_{k,n}\}_{n=1}^{\infty}$ is defined as, $F_{k,n+1} = k \cdot F_{k,n} + F_{k,n-1}$, with $F_{k,0} = 0$, $F_{k,1} = 1$, for $n \geq 1$
Definition 2.2. The $k-$ Lucas sequence $\{L_{k,n}\}_{n=1}^{\infty}$ is defined as, $L_{k,n+1} = k \cdot L_{k,n} + L_{k,n-1}$, with $L_{k,0} = 2, L_{k,1} = k$, for $n \geq 1$

Characteristic equation of the initial recurrence relation is,

$$r^2 - k \cdot r - 1 = 0 \quad (1)$$

Characteristic roots are

$$r_1 = \frac{k + \sqrt{k^2 + 4}}{2} \quad (2)$$

and

$$r_2 = \frac{k - \sqrt{k^2 + 4}}{2} \quad (3)$$

Characteristic roots verify the properties

$$r_1 - r_2 = \sqrt{k^2 + 4} = \sqrt{\Delta} = \delta \quad (4)$$

$$r_1 + r_2 = k \quad (5)$$

$$r_1 \cdot r_2 = -1 \quad (6)$$

Binet forms for $F_{k,n}$ and $L_{k,n}$ are

$$F_{k,n} = \frac{r_1^n - r_2^n}{r_1 - r_2} \quad (7)$$

and

$$L_{k,n} = r_1^n + r_2^n \quad (8)$$
2.1 The first few members of this k Fibonacci family are

\[
\begin{align*}
1, \\
k, \\
1 + k^2, \\
2k + k^3, \\
1 + 3k^2 + k^4, \\
3k + 4k^3 + k^5, \\
1 + 6k^2 + 5k^4 + k^6, \\
4k + 10k^3 + 6k^5 + k^7, \\
1 + 10k^2 + 15k^4 + 7k^6 + k^8, \\
5k + 20k^3 + 21k^5 + 8k^7 + k^9, \\
1 + 15k^2 + 35k^4 + 28k^6 + 9k^8 + k^{10}, \\
6k + 35k^3 + 56k^5 + 36k^7 + 10k^9 + k^{11}, \\
1 + 21k^2 + 70k^4 + 84k^6 + 45k^8 + 11k^{10} + k^{12}, \\
7k + 56k^3 + 126k^5 + 120k^7 + 55k^9 + 12k^{11} + k^{13}, \\
1 + 28k^2 + 126k^4 + 210k^6 + 165k^8 + 66k^{10} + 13k^{12} + k^{14}, \\
8k + 84k^3 + 252k^5 + 330k^7 + 220k^9 + 78k^{11} + 14k^{13} + k^{15}, \\
1 + 36k^2 + 210k^4 + 462k^6 + 495k^8 + 286k^{10} + 91k^{12} + 15k^{14} + k^{16}, \\
9k + 120k^3 + 462k^5 + 792k^7 + 715k^9 + 364k^{11} + 105k^{13} + 16k^{15} + k^{17}, \\
1 + 45k^2 + 330k^4 + 924k^6 + 1287k^8 + 1001k^{10} + 455k^{12} + 120k^{14} + 17k^{16} + k^{18}, \\
10k + 165k^3 + 792k^5 + 1716k^7 + 2002k^9 + 1365k^{11} + 560k^{13} + 136k^{15} + 18k^{17} + k^{19}
\end{align*}
\]
2.2 \(k \) Fibonacci sequences in Encyclopaedia of Integer Sequences

<table>
<thead>
<tr>
<th>(F_{k,n})</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{1,n})</td>
<td>A000045</td>
</tr>
<tr>
<td>(F_{2,n})</td>
<td>A000129</td>
</tr>
<tr>
<td>(F_{3,n})</td>
<td>A006190</td>
</tr>
<tr>
<td>(F_{4,n})</td>
<td>A001076</td>
</tr>
<tr>
<td>(F_{5,n})</td>
<td>A052918</td>
</tr>
<tr>
<td>(F_{6,n})</td>
<td>A005668</td>
</tr>
<tr>
<td>(F_{7,n})</td>
<td>A054413</td>
</tr>
<tr>
<td>(F_{8,n})</td>
<td>A041025</td>
</tr>
<tr>
<td>(F_{9,n})</td>
<td>A099371</td>
</tr>
<tr>
<td>(F_{10,n})</td>
<td>A041041</td>
</tr>
<tr>
<td>(F_{11,n})</td>
<td>A049666</td>
</tr>
</tbody>
</table>

3 \(k \) RELATIONSHIP OF THE SEQUENCES \(F_{k,N} \) AND \(L_{k,N} \) AS CONTINUED FRACTIONS:

In general, a (simple) continued fraction is an expression of the form

\[
[a_0, a_1, \ldots, a_n] = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{\ddots + \cfrac{1}{a_n}}}}}
\]

(9)

The letters \(a_1, a_2, \ldots \) denote positive integers. The letter \(a_0 \) denotes an integer.

The expansion \(\frac{F_{k,n+1}}{F_{k,n}} \) in continued fraction is written as

\[
\frac{F_{k,n+1}}{F_{k,n}} = k + \cfrac{1}{k + \cfrac{1}{k + \cfrac{1}{k + \ddots + \cfrac{1}{k + \cfrac{1}{a_n}}}}}
\]

(10)

Here \(n \) denotes the number of quantities equal to \(k \).

We knew that

\[
F_{k,n}^2 - F_{k,n-1}F_{k,n+1} = (-1)^{n-1}
\]

(11)
Moreover, in general we have

\[\frac{F_{k,n+1}}{F_{k,n}} = r_1 \frac{1 - (\frac{r_2}{r_1})^{n+1}}{1 - (\frac{r_2}{r_1})^n} \]

Let, \(r_1 \) denote the larger of the root, we have

\[\lim_{n \to \infty} \frac{F_{k,n+1}}{F_{k,n}} = r_1 \]

More generaly formula (9) is written as

\[\frac{F_{k,(n+1)t}}{F_{k,nt}} = L_{k,t} - \frac{(-1)^y}{L_{k,j} - \frac{(-1)^y}{L_{k,j} - ...}} \]

(12)

Here, \(n \) denotes the number of \(L_{k,t} \)'s

When \(n \) increases indefinitely, we have

\[\lim_{n \to \infty} \frac{F_{k,(n+1)t}}{F_{k,nt}} = (r_1)^y \]

As equation (9), we have relation for \(L_{k,n} \)

\[\frac{L_{k,(n)t}}{F_{k,(n-1)t}} = L_{k,t} - \frac{(-1)^y}{L_{k,j} - \frac{(-1)^y}{L_{k,j} - ...}} \]

(13)

Here \(n \) denotes the number of quantities equal to \(L_{k,t} \).

We knew that

\[L_{k,n}^2 - L_{k,n-1}L_{k,n+1} = (-1)^n \Delta \]

(14)

More generally, equations (10) and (13) are modified as

\[F_{k,nt}^2 - F_{k,(n-1)t}F_{k,(n+1)t} = (-1)^{(n-1)y}(F_{k,t})^2 \]

(15)
Moreover using (7) and (8), gives

$$\Delta F_{k,n}^2 = r_1^{2n+2t} + r_2^{2n+2t} - 2(-1)^{n+t}$$ \hspace{1cm} (17)$$

$$\Delta L_{k,n}^2 = r_1^{2n} + r_2^{2n} - 2(-1)^n$$ \hspace{1cm} (18)$$

Again by subtracting (16) and (17), gives

$$\Delta (F_{k,n+t}^2 - (-1)^t F_{k,n}^2) = (r_1^{2n+t} - r_2^{2n+t})(r_1' + r_2')$$ \hspace{1cm} (19)$$

and

$$F_{k,n+t}^2 - (-1)^t F_{k,n}^2 = \Delta F_{k,t} F_{k,2n+t}$$ \hspace{1cm} (20)$$

Similarly, we obtain

$$L_{k,n+t}^2 - (-1)^t L_{k,n}^2 = \Delta F_{k,t} L_{k,2n+t}$$ \hspace{1cm} (21)$$

4 SEQUENCES $F_{K,N}$ AND $L_{K,N}$ AS A SERIES OF FRACTIONS:

Theorem 4.1. For $n, k > 0$,

1. \[
\frac{F_{k,n+1}}{F_{k,n}} = \frac{F_{k,2}}{F_{k,1}} - \frac{(-1)^2}{F_{k,1} F_{k,2}} - \frac{(-1)^3}{F_{k,2} F_{k,3}} - \frac{(-1)^4}{F_{k,3} F_{k,4}} - \cdots - \frac{(-1)^{n-1}}{F_{k,n-1} F_{k,n}}
\]

2. \[
\frac{L_{k,n+1}}{L_{k,n}} = \frac{L_{k,2}}{L_{k,1}} - \frac{(-1)^2 \Delta}{L_{k,2} L_{k,1}} - \frac{(-1)^3 \Delta}{L_{k,2} L_{k,3}} - \frac{(-1)^4 \Delta}{L_{k,3} L_{k,4}} - \cdots - \frac{(-1)^n \Delta}{L_{k,n-1} L_{k,n}}
\]
Proof. We can write expressions of \(\frac{F_{k,n+1}}{F_{k,n}} \) and \(\frac{L_{k,n+1}}{L_{k,n}} \) in series as

\[
\frac{F_{k,n+1}}{F_{k,n}} = \frac{F_{k,2}}{F_{k,1}} + \left(\frac{F_{k,3}}{F_{k,2}} - \frac{F_{k,2}}{F_{k,1}} \right) + \left(\frac{F_{k,4}}{F_{k,3}} - \frac{F_{k,3}}{F_{k,2}} \right) + \cdots \\
+ \left(\frac{F_{k,n+1}}{F_{k,n}} - \frac{F_{k,n}}{F_{k,n-1}} \right)
\]

\[
= \frac{F_{k,2}}{F_{k,1}} - \frac{(F_{k,2}^2 - F_{k,3}F_{k,1})}{F_{k,1}F_{k,2}} - \frac{(F_{k,3}^2 - F_{k,2}F_{k,4})}{F_{k,2}F_{k,3}} - \cdots \\
- \frac{(F_{k,n}^2 - F_{k,n+1}F_{k,n-1})}{F_{k,n-1}F_{k,n}}
\]

And

\[
\frac{L_{k,n+1}}{L_{k,n}} = \frac{L_{k,2}}{L_{k,1}} + \left(\frac{L_{k,3}}{L_{k,2}} - \frac{L_{k,2}}{L_{k,1}} \right) + \left(\frac{L_{k,4}}{L_{k,3}} - \frac{L_{k,3}}{L_{k,2}} \right) + \cdots \\
+ \left(\frac{L_{k,n+1}}{L_{k,n}} - \frac{L_{k,n}}{L_{k,n-1}} \right)
\]

\[
= \frac{L_{k,2}}{L_{k,1}} - \frac{(L_{k,2}^2 - L_{k,3}L_{k,1})}{L_{k,1}L_{k,2}} - \frac{(L_{k,3}^2 - L_{k,2}L_{k,4})}{L_{k,2}L_{k,3}} - \cdots \\
- \frac{(L_{k,n}^2 - L_{k,n+1}L_{k,n-1})}{L_{k,n-1}L_{k,n}}
\]

Using the equations (11) and (14)

\[
F_{k,n}^2 - F_{k,n-1}F_{k,n+1} = (-1)^{n-1}
\]

\[
L_{k,n}^2 - L_{k,n-1}L_{k,n+1} = (-1)^n \Delta
\]

Gives

\[
\frac{F_{k,n+1}}{F_{k,n}} = \frac{F_{k,2}}{F_{k,1}} - \frac{(-1)^2}{F_{k,1}F_{k,2}} - \frac{(-1)^3}{F_{k,2}F_{k,3}} - \cdots - \frac{(-1)^{n-1}}{F_{k,n-1}F_{k,n}}
\]
Taking limit as $\lim_{n \to \infty}$, gives

$$r_1 = \frac{1 + \sqrt{k^2 + 4}}{2} = k + \frac{1}{1. k} - \frac{1}{k (k^2 + 4)} + \ldots$$

For Fibonacci series

$$\frac{1 + \sqrt{5}}{2} = 1 + \frac{1}{1.1} - \frac{1}{1.2} + \frac{1}{2.3} - \frac{1}{3.5} + \frac{1}{5.8} - \frac{1}{8.13} + \ldots$$

Now, we obtain more general relation for $F_{k,n}$ and $L_{k,n}$ as a series of fractions:

Theorem 4.2. For $n, k > 0$,

1.

$$\frac{F_{k,(n+1)t}}{F_{k,nt}} = \frac{F_{k,2t}}{F_{k,t}} - \frac{(-1)^t F_{k,2t}^2}{F_{k,2t} F_{k,3t}} - \frac{(-1)^{2t} F_{k,3t}^2}{F_{k,3t} F_{k,4t}} - \frac{(-1)^{3t} F_{k,4t}^2}{F_{k,4t} F_{k,5t}} - \ldots \frac{(-1)^{(n-1)t} F_{k,t}^2}{F_{k,(n-1)t} F_{k,nt}}$$

2.

$$\frac{L_{k,(n+1)t}}{L_{k,nt}} = \frac{L_{k,t}}{L_{k,0}} + \frac{\Delta F_{k,t}^2}{L_{k,0} L_{k,t}} + \frac{(-1)^t F_{k,2t}^2}{L_{k,2t} L_{k,3t}} + \frac{(-1)^{2t} F_{k,3t}^2}{L_{k,3t} L_{k,4t}} + \ldots \frac{(-1)^{(n-1)t} F_{k,t}^2}{L_{k,(n-1)t} L_{k,nt}}$$
Proof. We can write expressions of \(\frac{F_{k(n+1)t}}{F_{kt}} \) and \(\frac{L_{k(n+1)t}}{L_{kt}} \) in series as

\[
\frac{F_{k(n+1)t}}{F_{kt}} = \frac{F_{k,2t}}{F_{kt}} + \left(\frac{F_{k,3t}}{F_{k,2t}} - \frac{F_{k,2t}}{F_{kt}} \right) + \left(\frac{F_{k,4t}}{F_{k,3t}} - \frac{F_{k,3t}}{F_{k,2t}} \right) + \ldots
\]

\[
= \frac{F_{k,2t}}{F_{kt}} - \frac{F_{k,2t}^2 - F_{k,3t}F_{k,t}}{F_{k,2t}F_{k,t}} - \frac{F_{k,3t}^2 - F_{k,2t}F_{k,4t}}{F_{k,3t}F_{k,2t}} - \ldots
\]

And

\[
\frac{L_{k(n+1)t}}{L_{kt}} = \frac{L_{k,t}}{L_{k,0}} + \left(\frac{L_{k,2t}}{L_{k,t}} - \frac{L_{k,t}}{L_{k,0}} \right) + \left(\frac{L_{k,3t}}{L_{k,2t}} - \frac{L_{k,2t}}{L_{k,t}} \right) + \ldots
\]

\[
= \frac{L_{k,t}}{L_{k,0}} - \frac{L_{k,0}L_{k,2t} - L_{k,t}L_{k,3t}}{L_{k,0}L_{k,t}} - \ldots
\]

Using the equations (15) and (16)

\[
F_{k,nt}^2 - F_{k,(n-1)t}F_{k,(n+1)t} = (-1)^{(n-1)t}(F_{k,t})^2 \tag{22}
\]

\[
L_{k,nt}^2 - L_{k,(n-1)t}L_{k,(n+1)t} = (-1)^{(n-1)t} \Delta(F_{k,t})^2 \tag{23}
\]
Godase, AD, Dhakne, MB

Gives

\[
\frac{F_{k,(n+1)t}}{F_{k,nt}} = \frac{F_{k,2t}}{F_{k,t}} - \frac{(-1)^1F_{k,t}^2}{F_{k,2t}F_{k,3t}} - \frac{(-1)^2F_{k,t}^2}{F_{k,3t}F_{k,4t}} - \frac{(-1)^3F_{k,t}^2}{F_{k,4t}F_{k,(n-1)t}} - \frac{(-1)^{(n-1)t}F_{k,t}^2}{F_{k,(n-1)t}F_{k,nt}}
\]

And

\[
\frac{L_{k,(n+1)t}}{L_{k,nt}} = \frac{L_{k,t}}{L_{k,0}} + \frac{\Delta F_{k,t}^2}{L_{k,0}L_{k,t}} + \frac{(-1)^1F_{k,t}^2}{L_{k,t}L_{k,2t}} + \frac{(-1)^2F_{k,t}^2}{L_{k,2t}L_{k,3t}} + \ldots - \frac{(-1)^{(n-1)t}F_{k,t}^2}{L_{k,(n-1)t}L_{k,nt}}
\]

\[\square\]

Theorem 4.3. For \(n, m, k > 0\),

1.

\[
\frac{F_{k,n+mt}}{L_{k,n+mt}} = \frac{F_{k,n}}{L_{k,n}} + 2(-1)^nF_{k,t} \left[\frac{1}{L_{k,n}L_{k,n+t}} + \frac{(-1)^1}{L_{k,n+t}L_{k,n+2t}} + \frac{(-1)^2}{L_{k,n+2t}L_{k,n+3t}} + \ldots + \frac{(-1)^{(m-1)t}}{L_{k,n+(m-1)t}L_{k,n+mt}} \right]
\]

2.

\[
\frac{F_{k,n+mt}}{L_{k,n+mt}} = \frac{F_{k,n}}{L_{k,n}} + 2(-1)^nF_{k,t} \left[\frac{1}{L_{k,n}L_{k,n+t}} + \frac{(-1)^1}{L_{k,n+t}L_{k,n+2t}} + \frac{(-1)^2}{L_{k,n+2t}L_{k,n+3t}} + \ldots + \frac{(-1)^{(m-1)t}}{L_{k,n+(m-1)t}L_{k,n+mt}} \right]
\]
Proof. We can write expressions of \(\frac{F_{k,n+mt}}{L_{k,n+mt}} \) and \(\frac{L_{k,n+mt}}{F_{k,n+mt}} \) in series as

\[
\frac{F_{k,n+mt}}{L_{k,n+mt}} = \frac{F_{k,n}}{L_{k,n}} + \left(\frac{F_{k,n+t}}{L_{k,n+t}} - \frac{F_{k,n}}{L_{k,n}} \right) + \left(\frac{F_{k,n+2t}}{L_{k,n+2t}} - \frac{F_{k,n+t}}{L_{k,n+2t}} \right) + \ldots.
\]

\[
+ \left(\frac{F_{k,n+(m-1)t}}{L_{k,n+(m-1)t}} - \frac{F_{k,n}}{L_{k,n}} \right)
\]

\[
= \frac{F_{k,n}}{L_{k,n}} + \frac{(F_{k,n+1}L_{k,n} - F_{k,n}L_{k,n+1})}{L_{k,n}L_{k,n+1}} + \frac{(F_{k,n+2}L_{k,n+1} - F_{k,n+1}L_{k,n+2})}{L_{k,n+1}L_{k,n+2}}
\]

\[
+ \ldots.
\]

And

\[
\frac{L_{k,n+mt}}{F_{k,n+mt}} = \frac{L_{k,n}}{F_{k,n}} + \left(\frac{L_{k,n+t}}{F_{k,n+t}} - \frac{L_{k,n}}{F_{k,n}} \right) + \left(\frac{L_{k,n+2t}}{F_{k,n+2t}} - \frac{L_{k,n+t}}{F_{k,n+2t}} \right)
\]

\[
+ \ldots.
\]

\[
= \frac{L_{k,n}}{F_{k,n}} - \frac{(F_{k,n+1}L_{k,n} - F_{k,n}L_{k,n+1})}{L_{k,n}L_{k,n+1}} - \frac{(F_{k,n+2}L_{k,n+1} - F_{k,n+1}L_{k,n+2})}{L_{k,n+1}L_{k,n+2}}
\]

\[
+ \ldots.
\]

Using the equations (15) and (16)

\[
F_{k,n}^2 - F_{k,(n-1)}F_{k,(n+1)} = (-1)^{(n-1)}(F_{k,k})^2
\]

\[
L_{k,n}^2 - L_{k,(n-1)}L_{k,(n+1)} = -(1)^{(n-1)}(\Delta(F_{k,k}))^2
\]

Gives

\[
\frac{F_{k,n+mt}}{L_{k,n+mt}} = \frac{F_{k,n}}{L_{k,n}} + 2(-1)^n \left(\frac{1}{L_{k,n}L_{k,n+1}} + \frac{(-1)^n}{L_{k,n+2}L_{k,n+3}} \right) + \ldots.
\]

...
Godase, AD, Dhakne, MB

\[
\frac{F_{k,n+mt}}{L_{k,n+mt}} = \frac{F_{k,n}}{L_{k,n}} + 2(-1)^n F_{k,t} \left[\frac{1}{L_{k,n+1}L_{k,n+2t}} + \frac{(-1)^t}{L_{k,n+2t}L_{k,n+3t}} + \ldots + \frac{(-1)^{(m-1)t}}{L_{k,n+(m-1)t}} \right]
\]

5 CONCLUSIONS

Some new relationship between \(k \) Fibonacci and \(k \) Lucas sequences using continued fractions and series of fractions are derived, this approach is different and never tried in \(k \) Fibonacci sequence literature.

REFERENCES

Fibonacci and Lucas Sequences as Series of Fractions
